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A theoretical model for vesicle fission induced by particle adsorption and aggregation on a membrane
surface is presented. The bulk fluid contains particles that are adsorbed reversibly to the membrane. Adsorbed
particles aggregate on the membrane, forming particle-rich domains. Domains at a critical size which contains
nv particles become vesicles and leave the membrane. We find that for parameters that correspond to typical
experimental situations, vesicle formation is energetically favored except for a possible energy barrier for
domain nucleation at small n, where n is the number of particles in a domain. We also find that in typical
experimental situations a particle-rich domain grows without being affected strongly by neighboring domains,
and the vesicle formation rate is proportional to adsorption rate jon when jon is large; when jon is small the
vesicle formation rate scales like jon

2 . Because the diffusion flux is small for domains with small in-plane radius
Rn, in the time-independent state the densities of domains with n /nv�1 and 1−n /nv�1 are large.
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I. INTRODUCTION

An important function of biomembranes is to separate the
inner and outer environments of a cell or an organelle. For
example, ions and small molecules move through specific
channels in a biomembrane �1�. On the other hand, a cell
often takes larger particles like proteins and viruses by en-
gulfing these particles with cell membrane, a process termed
endocytosis. In many cases, large particles in the bulk fluid
outside the cell first adsorb on the membrane, then assemble
to form domains, domains with sufficiently large size form
buds in the membrane, and eventually become vesicles and
leave the membrane with or without help from specific pro-
teins �1�. For example, experiments with the yolk of hen
ovum indicated that particles assemble on the cytosolic sur-
face of the membrane and then form vesicles �2�. Experi-
ments on HeLa cells �3� found that transferrin receptors are
taken into the cell via coated pits. Recent experiments on
retroviruses also indicate that the budding of retroviruses be-
gins with the adsorption and assembly of Gag proteins on the
cell membrane �4�.

Theoretical studies on endocytosis have focused on how
viruses or colloids coated with many specific ligands enter
cells. Lipowsky et al. �5� studied the free energy of flexible
membranes in contact with dispersed nanoparticles or col-
loids and showed that when membrane-particle interactions
are attractive the membrane can wraps itself around the par-
ticles. In an analysis based on equilibrium statistical mechan-
ics, Tzlil et al. �6� showed that complete viral budding can
take place only when the ligand-receptor adhesion energy
exceeds a critical bending free energy. Gao et al. �7� showed
that viruses with sizes in the range of tens to hundreds of
nanometers can enter cells via wrapping events in the ab-
sence of clathrin coats, and there exists an optimal viral size
that has the shortest wrapping time. Effenterre and Roux �8�
studied the adhesion of colloidal particles on the surface of a
cell and showed distinct behavior of the system at low and
high concentrations of colloidal particles. On the other hand,
there have been relatively few studies on the formation of
fluid-containing vesicles with many particles adhered to their

inner surfaces. �9� For example, a recent simulation shows
that the attractive interaction induced by membrane curva-
ture elasticity is sufficient to drive the aggregation of par-
ticles for vesicle formation �10�. The energetics for human
immunodeficiency virus �HIV� self-assembly and budding
and the dynamics of the early stage of budding of a partial
budded retrovirus capsid were studied by Zhang and Nguyen
�11�

This paper discusses several issues that have not been
addressed or have only been partially addressed in previous
theoretical work on adsorption-induced vesicle formation.
The formation of vesicles follows the growth of particle-rich
domains which in turn follows the adsorption of particles
from bulk fluid. Therefore one should treat the growth of
particle-rich domains as a two-dimensional domain growth
in the presence of an external particle source �the bulk fluid�
and sink �vesicles that leave the membrane�. In general, the
growth of a particle-rich domain should be affected by other
domains in the membrane �12,13�. The following questions
are of special interest: Is domain growth and vesicle forma-
tion a thermally activated process? How does the number of
vesicles produced by the membrane depend on the adsorp-
tion rate of particles? What is the density of particle-rich
domains with given size? How does the growth of a particle-
rich domain depend on its neighboring domains? We shall
begin with a discussion on the energetics of domain growth
and vesicle formation that follows closely the classic work of
Lipowsky �14�. Based on energetic considerations, we con-
struct a minimal model for the kinetics of the vesicle forma-
tion process. Our study provides answers for the questions
above.

II. ENERGETIC CONSIDERATION

As shown in Fig. 1, the system under consideration con-
tains a flat membrane that separates the outer and inner flu-
ids. The outer fluid contains particles that can be adsorbed
reversibly on the membrane. The adsorption rate is denoted
as jon and the desorption rate is denoted as joff. After being
adsorbed on the membrane, these particles aggregate and
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form particle-rich domains that bud toward the inner fluid
with radius of curvature R. Typically, R is in the range from
tens of nanometers to about 1 �m, and in general R depends
on n, the number of particles in the domain. We assume that
domains with nv particles depart from the membrane and
enter the inner fluid by vesicle fission. The key physical
mechanism for the budding of a particle-rich domain is the
tendency for the particles to bend the membrane, although it
has been pointed out that line tension of the domain bound-
ary can induce budding even when the spontaneous curva-
ture of a domain is zero �15�.

In many biological examples, the aggregation of adsorbed
particles on a membrane is mediated by specific interactions,
not weak generic interactions. Therefore we assume that a
particle-rich domain with n particles has area n�a2; here a
�2–5 nm is the effective radius of a particle. In this paper,
all numerical solutions are performed by taking a=2nm, and
we have checked that all results are unchanged qualitatively
if a is taken to be 5nm. As shown in Fig. 2, we assume that,
when a particle-rich domain buds it has the shape of a spheri-
cal cap with radius of curvature R, the area of the neck of the
domain is �Rn

2, where Rn is the radius of the neck. The mem-
brane outside a particle-rich domain is stretched by the do-
main because the area of a neck is smaller than that of a flat
domain. The free energy of a particle-rich domain includes
the energy cost for stretching the membrane, the bending

energy of the domain, the line energy of the neck, and the
aggregation energy of the particles �14�,

F = ��n�a2 − �Rn
2� + n�a2�

2
� 2

R
−

2

R0
�2

+ 2�Rn� + Ean .

�1�

Here � is the surface tension of the membrane, � is the
bending rigidity of the domain, R0 is the preferred radius of
curvature for a particle-rich domain, � is the line tension on
the boundary of the domain, and Ea is the chemical potential
of a particle in the domain. For living cells ��10−5 J /m2

�16�. The line tension � can be estimated roughly as �
��Ea� /a. Due to contributions from the adsorbed particles,
the bending elastic modulus � of the domain is large com-
pare to that of a pure lipid bilayer, i.e., ��20kBT. For par-
ticles that can aggregate on a membrane, �Ea�	kBT.

The equilibrium shape of a domain for given n is deter-
mined by minimizing the free energy with respect to the
radius of curvature, i.e., ��F /�R�n=0. The shape of the do-
main can be described by 	na /R, and it follows that Rn

=	na	1− �	na /2R�2. When the domain is flat, 	na /R=0
and Rn=	na; as the domain buds 	na /R increases until
	na /R→2 and Rn→0. The equation of state of the domain
at given n is

8
�/�
	na

�	na

R
−

	na

R0
� = �1 −

Rn

�/��	na

R

1

	1 − �	na/2R�2
.

�2�

Since ��20kBT, ���Ea� /a, Rn
O�100 nm�, and �Ea�
	kBT, we have �1−Rn � /��
O�1� and � /	na /��1. In
this limit the radius of curvature of the domain is expected to
be close to R0. Straightforward calculation shows the follow-
ing.

�a� When 1−	na /2R0�O�1�,

1

R



1

R0
�1 +

	na

8�/�� 1

	1 − �	na/2R0�2
−

	na

�/��� . �3�

�b� When 1−	na /2R0=��1, the curvature of the domain
is 1 /R= �1 /R0��1+��, where � satisfies

� = � + �4	2��/�
R0

� +
R0

2�/���−2

. �4�

First, Eq. �4� ensures that ��1 in this regime. Therefore the
radius of curvature of a domain is always close to R0. Fur-
thermore, Eq. �4� does not have a solution with �0 when
���min
 3

2 �4−2/3�� /� R0�−2/3− 1
2 �R0 � /���� /� R0�−1. This

means that, when the domain grows to 	na /2R0=1−�min,
the local free energy minimum disappears, and the bud loses
stability and forms a vesicle immediately. This also means
that before 	na /2R0 reaches 1−�min there is a range of n
where the incomplete bud is thermodynamically metastable.
Indeed, one can look for the value of � at which the free
energy of the bud with � given by the solution of Eq. �4� is
the same as the free energy of a vesicle with the same num-
ber of particles. The result is that this happens when �=�*


 3
4 �� /� R0�−2/3− 1

2 �R0 � /���� /� R0�−1. Therefore a domain

FIG. 1. Schematics of the system under consideration. A flat
membrane separates the inner and outer fluids; the outer fluid con-
tains particles that can be adsorbed to the membrane and the inner
fluid does not contain any particles. Particles adsorb on the mem-
brane with rate jon; after adsorption they can depart from the mem-
brane with rate joff. At the same time, particles on the membrane
aggregate to form domains that bud toward the inner fluid with
radius of curvature R. Sufficiently large domains depart from the
membrane by vesicle fission.

FIG. 2. Schematics of a particle-rich domain. Before budding
the domain is a flat disk with radius 	na /�; after budding the
domain has a neck with radius Rn.
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with 1−�min	na /2R01−�* may become a vesicle by
thermal activation. The energy barrier for a bud with
	na /2R0=1−�* to change its shape to a complete vesicle is
also straightforward to calculate; it is 2��R0��2−3�
+2	���� /� R0�−1/3, where �= �2−	3� /2.

The above discussion indicates that, although thermally
activated and spontaneous vesicle formation is possible, the
radius of curvature is R
R0 for all particle-rich domains in
the membrane, and vesicle formation occurs when n�a2


4�R0
2. Therefore in the rest of this paper we shall assume

R=R0 for all domains, and domains with nv=4�R0
2 /�a2 par-

ticles become vesicles. By taking R=R0 the free energy of a
domain becomes

F = Ean + �
�a2

4�R0
2�a2n2 + 2��	na	1 −

n�a2

4�R0
2

= Eanv� n

nv
− �̃� n

nv
�2

−
�̃

	nv

	 n

nv
�1 −

n

nv
�� , �5�

where �̃=−�a2� /Ea is the dimensionless surface tension of
the membrane, and �̃=−2�a� /Ea is the dimensionless line
tension of the domain boundary. Substituting typical values

of �, a, and �, we find that �̃�O�1� and �̃�O�1�.
Equation �5� tells us that particle-rich domains can exist

when Ea�0. As a domain grows, it has to pull nearby lipids
in order to form a neck; this process costs a surface energy
that scales as �n /nv�2. The line energy of the neck also con-
tributes to the free energy of a domain. For small n /nv the
line energy increases as n1/2; as n /nv approaches 1 the line
energy approaches zero as �1−n /nv�1/2. This indicates that
there are two possible energy barriers for vesicle formation.
�i� When the line tension of the domain is sufficiently large,
there is an energy barrier at n /nv�1 for domain nucleation.
�ii� When the surface tension of the membrane exceeds some
critical value, a local free energy minimum appears at n /nv

1. Figure 3 shows F�n� in situations where there is a bar-
rier due to line tension, a minimum due to surface tension,
and no energy barrier for vesicle formation. The sign of
��F /�n�n=1 can be used to check whether there is an energy
barrier at small n. From

� �F

�n
�

n=1

 Eanv�1 −

2�̃

nv
−

�̃

2
� 
 Eanv�1 −

�̃

2
� at nv � 1,

as long as �̃�2 the free energy of the domain decreases with
increasing n at small n, and there is no line-tension-induced
energy barrier. When surface tension is sufficiently large, an
energy minimum appears at n /nv=1−� where ��1. There-
fore when this energy minimum just appears both �F /�n and
�2F /�n2 vanish at n /nv=1−�. These two conditions give us

2�̃� +
�̃

2	nv�
+ �1 − 2�̃� = 0 �6�

and

2�̃ −
�̃

4	nv���1 − ���3
= 0. �7�

It follows that �= ��̃ /8�̃	nv�2/3 and �̃= �̃c= 1
2 �1

+ 3
2 ��̃2 /2nv�1/3��O�1�. Since �̃�O�1� for typical values of

�, a, and �, we find that F is a monotonically decreasing
function of the number of particles n in the domain except
for a possible energy barrier at small n due to the line tension
of the domain boundary.

III. MODELING THE KINETICS

Based on the study of the free energy of a particle-rich
domain, in the analysis of the kinetics of vesicle fission we
assume that �i� the particles adjust their positions quickly
once they are attached to the domains, and as a result a
domain always has a circular boundary, �ii� due to strong
binding energy between the particles, particles in a domain
with n1 do not leave the membrane, �iii� domain growth is
a diffusion-limited process—once a particle reaches the
boundary of another domain it joins that domain immedi-
ately, and �iv� there is a critical number of particles in a
domain, nv=4�R0

2 /�a2, such that domains containing n
�nv particles grow, and once n reaches nv a domain be-
comes a vesicle immediately. Since nv�1, in the following
we shall take nv�1
nv. Assumption �ii� should hold for
�̃�2 and we expect this approximation will not affect our
analysis seriously because �̃ /2�O�1�, so the critical size for
domain nucleation should be small anyway.

Let ��n , t� be the number of n-particle domains per unit
area at time t; the areal fraction of particle-rich domains on
the membrane is n=1

nv−1n�a2��n , t�. The time evolution of the
total areal fraction of particle-rich domains on the membrane
is described by

0 0.5 1.0
n�nv

�0.5

�0.25

0

F
�E

a
n v

FIG. 3. Free energy of a domain with n particles for nv=1000.

Solid line, �̃=0.5, �̃=1; short-dashed line, �̃=0.5, �̃=10; long-

dashed line, �̃=0.5�1+5��̃2 /2nv�1/3��c
˜ , �̃=1. The dimensionless

surface tension �̃=−�a2� /Ea, and the dimensionless line tension of
the domain, �̃=−2�a� /Ea. Solid line does not have local mini-
mum, short-dashed line has a barrier at n /nv�1 due to the line
energy of the domain, and long-dashed line has an energy minimum
at large n /nv due to surface tension of lipids outside the domain.
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d

dt
� 

n=1

nv−1

n�a2��n,t�� = jon�1 − 
n=1

nv−1

n�a2��n,t��
− joff�a2��1,t� − nv�a2k�nv − 1�

���nv − 1,t� , �8�

where k�n� is the growth rate of domains containing n par-
ticles. The first two terms on the right-hand side are the
number of particles adsorbed to or desorbed from the mem-
brane per unit area per unit time. The last term comes from
particles leaving the membrane by vesicle fission. Typically
joff
−1 
�0 exp�� /kBT��10−6–102 s, where �0=6��a3 /kBT

�10−7 s �17� is the characteristic microscopic time for a par-
ticle to escape from the membrane; because usually several
hydrogen bonds are involved in binding between a particle
and the membrane, the typical binding energy of a particle is
���2–20�kBT. jon

−1 gives the time scale for particles to fill the
membrane surface for irreversible adsorption. jon / joff gives
the characteristic areal fraction of particles for adsorption
and desorption; in most experiments jon� joff.

Since domain growth is assumed to be irreversible, ��n , t�
obeys

���n,t�
�t

= − k�n���n,t� + k�n − 1���n − 1,t� , �9�

for nv−1�n1. In Eq. �9� we have neglected the possibility
that particles in the outer fluid adsorb directly to the periph-
ery of a domain. Combining Eqs. �8� and �9�, one finds that

���1,t�
�t

= − k�1���1,t� − 
n=1

nv−1

k�n���n,t�

+
jon

�a2�1 − 
n=1

nv−1

�a2n��n,t�� − joff��1,t�

=
jon

�a2 − joff��1,t� − �k�1���1,t� + 
n=1

nv−1

k�n���n,t�� .

�10�

The first two terms of the last expression come from particles
adsorbed to and desorbed from the membrane; the remaining
terms come from particle-particle collisions and particles
joining other domains. Because we are interested in the
small areal fraction limit �a2n=1

nv−1n��n , t��1, thus

jon�1−n=1
n*−1�a2n��n , t��
 jon.

When the distribution of domain size reaches a time-
independent state, ��n , t�→�s�n�, and Eq. �9� gives

k�n��s�n� = k�1��s�1� , �11�

for 1�n�nv−1. In this state the number of vesicles pro-
duced per unit area per unit time is �s�nv−1�k�nv−1�
=�s�1�k�1�, and the number of single-particle domains in the
membrane can be found from Eq. �10�,

�s�1� =
jon

�nvk�1� + joff��a2 . �12�

This expression simply states that in the time-independent
state the number of particles adsorbed by the membrane per
unit time is the sum of the number of particles joining other
domains �the first term in the denominator of Eq. �12�� and
the number of particles leaving the membrane without join-
ing other domains �joff term in Eq. �12��.

In our model a domain is a perfect sink that grows by
recruiting other adsorbed particles within the “basin of at-
traction” around it; the domain growth rate k�n� can be found
from the particle diffusion flux on the domain boundary. In-
troducing number density of one-particle domains �1�r , t�,
whose spatial average is ��1, t�, Equation �10� provides us
the following picture for the time evolution of �1�r , t�. De-
pending on the characteristic size of the basins of attraction
and the average interdomain distance, there are two limiting
situations. In the first case the basins of attraction of neigh-
boring domains do not overlap and therefore the growth of a
domain is not affected by other domains. This case is called
the “independent growth regime.” In the second case the
typical size of the basins of attraction becomes large com-
pared to the average interdomain distance; therefore a do-
main grows by sharing the same “particle source” with many
neighboring domains. This situation is called the “strongly
coupled regime.” This leads to the following equation for the
local density �1�r , t� in the rest frame of an n-particle domain
with n�1 located at r=0:

��1�r,t�
�t

= D�2�1 +
jon

�a2 − joff�1 − D�−2�1. �13�

D is the diffusion coefficient of an adsorbed particle in the
rest frame of the domain, D�1 �m2 /s �17�. The last term on
the right-hand side represents other sinks �domains� located
at r. In the independent growth regime D�−2=0; in the
strongly coupled regime D�−2 can be determined by the fol-
lowing method �18�. Because k�1���1, t�+n=1

nv−1k�n���n , t�
=nvk�1��s�1� when ��n�→�s�n�, it follows by comparing to
Eq. �10� that �D�−2���n�→�s�n�=nvk�1� in the strongly coupled
regime. In short, when ��n�→�s�n�,

D�−2 = �0 in independent growth regime,

nvk�1� in the strongly coupled regime,
�

�14�

and

�1�r = �� =
jon

�a2�jon + joff + D�−2�
�

jon

�a2Dm2 . �15�

Here the inverse characteristic length m
=	�jon+ joff+D�−2� /D
	�joff+D�−2� /D.

As in the phase-ordering kinetics of binary fluids �19�, the
characteristic time scale for domain growth is much longer
than that of particle diffusion in the membrane. Therefore
�1�r� satisfies the steady state solution of Eq. �13� with
�1�Rn�=0 and �1���= jon / ��a2Dm2�. The domain growth
rate k�n� is related to �1��� by
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k�n� = �2�rD���1/�r��r=Rn
= 2�RnDm

K1�mRn�
K0�mRn�

�1��� .

�16�

Here Km�x� is the modified Bessel function of order m �20�.
Equation �16� describes the growth rate of domains with n
1, but k�1� has to be treated differently because the growth
of a domain from n=1 to 2 is caused by binary collision, and
in the rest frame of a one-particle domain that is located at
the origin, the first term of Eq. �13� should be replaced by
2D�2�1. Furthermore, the capture radius for a binary colli-
sion is approximately 2a �21�. Straightforward algebra simi-
lar to the derivation of k�n1� gives

k�1� = 4	2�Dma
K1�	2ma�
K0�	2ma�

�1��� . �17�

Equatios �11�, �12�, and �15�–�17� form a closed set of equa-
tions for the system in the limit ��n , t�→�s�n�.

IV. KINETICS OF DOMAIN GROWTH

A. Typical domain growth is in the independent growth
regime

Let us first check whether domain growth is strongly
coupled or not. Equation �13� indicates that when domain
growth is strongly coupled, the average interdomain distance
ld�1 /	n=1

nv−1�s�n� should be small compared to �
=	D /nvk�1�, the characteristic length in the strongly coupled
regime.

Figure 4 shows � / ld as a function of jon for nv=1000 and
several typical values of joff. We find that � / ld
1 for all jon
and joff shown in the figure. In the Appendix we show ana-
lytically that in general � / ld
1. Thus, for typical experi-
ments, domain growth is not in the strongly coupled regime.

In the rest of this paper we shall focus on the independent
growth regime. In this regime, D�−2=0 and �1���
 jon / joff.

B. Vesicle production rate shows two regimes with distinct
dependence on particle adsorption rate

The main physical quantity of interest is, of course, the
number of vesicles leaving the membrane per unit time per
unit area. When ��n�→�s�n� this quantity is simply
�s�nv�k�nv�=�s�1�k�1�. From Eq. �12� we find two limiting
cases.

�i� When nvk�1�� joff, most particles adsorbed by the
membrane join other domains without leaving the mem-
brane. By substituting the asymptotic forms of the modified
Bessel functions and keeping leading terms, this limit can be
expressed as

D
nv

a2

jon

joff
2 � O�1� , �18�

i.e., this limit occurs at sufficiently large jon. In this limit the
density of single-particle domains is �s�1�= jon / �nvk�1��a2�,
and the number of vesicles leaving the membrane per unit
area per unit time is

�s�nv�k�nv� = �s�1�k�1� =
jon

nv�a2 . �19�

That is, when particles seldom leave the membrane, the num-
ber of particles adsorbed by the membrane per unit time
divided by the number of particles in a vesicle is the number
of vesicles leaving the membrane per unit time.

�ii� When nvk�1�� joff �i.e., when Dnvjon /a2joff
2 �O�1��,

most of the adsorbed particles leave the membrane without
joining other domains. In this limit Eq. �12� becomes �s�1�
= jon / �joff�a2�. By combining Eqs. �11� and �17� one finds
that

�s�nv�k�nv� = �s�1�k�1�



4D

�a4

�jon/joff�2

− ln�	2ma� − � + ln 2

�
D

a4� jon

joff
�2

�
D

a4 ��1����2. �20�

Here �=0.5772... is the Euler-Mascheroni constant �20�. In
this limit the number of vesicles produced per unit time is
proportional to the probability of particle-domain collision,
which is proportional to ��1����2.

Figure 5 shows the number of vesicles produced per unit
time by a membrane with area 100 �m2 as a function of jon.
This is obtained by substituting joff=102 s−1 and nv=100,
1000, and 10000, respectively, into Eqs. �11�, �12�, �15�, and
�17�. Indeed ��nv�k�nv�� jon at large jon and ��nv�k�nv�
� jon

2 at small jon. There are two additional interesting fea-
tures in Fig. 5. The first is that, for large nv �e.g., nv
	10 000�, ��nv�k�nv�� jon

2 occurs only at extremely small
jon. This suggests that for particles that form large vesicles
single-particle domains seldom leave the membrane because
the domain density is high and most single-particle domains
join other domains within the time scale joff

−1. The second is

10
-4
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-2

10
0

10
2

10
4

10
6

j
on

(s
-1 µm

-2
)

0

0.2

0.4

0.6

0.8

1

1.2

ξ
/l

d

FIG. 4. Ratio between �, the characteristic length associated
with sinks in the strongly coupled regime, and ld, the average inter-
domain distance for nv=1000. joff=103 �circles�, 10 �triangles�, and
10−2 s−1 �squares�. The result indicates that on average the number
of particle-rich domains in a region of size �� is small �i.e.,
�O�1��. This result holds for 100�n*�10 000 �data not shown�.
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that when ��nv�k�nv�� jon
2 the vesicle production rate is in-

dependent of nv, as predicted by Eq. �20�.

C. Domain size distribution is strongly affected by the size of
domain necks

Another physical quantity of interest is the domain size
distribution in the time-independent state. From Eqs. �11�
and �12�,

�s�n� =
jon

�a2

k�1�
k�n�

1

nvk�1� + joff

= �
joff

2�nvD
�− ln�mRn� − � + ln 2� when nvk�1� � joff,

2jon

�a2joff

− ln�mRn� − � + ln 2

− ln�	2ma� − � + ln 2
when nvk�1� � joff.�

�21�

In the final expression only Rn depends on n; therefore �s�n�
depends weakly on n; except at n /nv�1 and 1−n /nv�1.
Figure 6 shows the density of n-particle domains for joff
=102 s−1, nv=1000, jon=102 s−1 �m−2 �when nvk�1�� joff�,
and jon=10−1 s−1�m−2 �when nvk�1�� joff� from n=10 to n
=nv. Indeed, except for the magnitude of �s�n�, both curves
look similar to each other: �s�n� is large at n /nv�1 and
n /nv
1, and �s�n� is small when n�nv /2. This suggests
that the periphery of a domain is the main factor that deter-
mines the domain size distribution and the domain growth
rate. Domains with n�nv /2 grow faster as n increases; do-
mains with nnv /2 grow more slowly as n increases. As a
result there are many large domains with n /nv
1 and many
small domains with n /nv�1, but there are few domains with
n�nv /2.

D. Collisions between domains are negligible when joff is small
and jon is large

Previous studies on vesicle formation from a bulk solution
of amphiphilic molecules via the formation and aggregation

of disklike micelles have shown that collisions between mi-
celles �clusters� is very important for vesicle formation �22�.
However, in our system the vesicles are formed by aggrega-
tion of particles on a bilayer membrane surface, and so far
we have neglected the collisions between domains with n
1 in our model. To check if collisions between domains
with n1 are important, we define T=n=1

nv−11 /k�n�, the time
for n to grow from 1 to nv. Then we compare the diffusion
length of a domain during time T with 1 /	n=2

nv �s�n�, the
average distance between neighboring n1 domains. When
the average domain diffusion constant during time T is large
compared to �n=2

nv �s�n�T�−1, collisions between n1 do-
mains are important. The diffusion constant of a rigid do-
main in a lipid membrane is a long-standing problem �23�; as
a simple estimate we use the diffusion constant of a typical
membrane protein ��1 � m2 /s� as the upper limit for the
average diffusion constant of a domain during time T. Thus
collisions between n1 domains become important when
�n=2

nv �s�n�T�−1�1 � m2 /s.
As shown in Fig. 7, �n=2

nv �s�n�T�−1 increases as jon in-
creases or joff decreases. For particles with joff=10−2 s−1, col-
lisions between domains with n1 are expected to be im-
portant only when jon is extremely small; but for particles
with joff	103 s−1, collisions between domains with n1
should be important for typical jon in experiments. Therefore
we conclude that collisions between domains with n1 can
be neglected for particles that are adsorbed strongly on the
membrane; for particles that are adsorbed weakly on the
membrane, collisions between domains with n1 should be
important, unless those domains are fixed by linking to the
cytoskeleton under the membrane. The effect of inter-domain
collision on the kinetics of domain growth is beyond the
scope of our model; it will be discussed in a future work
�24�.

V. CONCLUSION

Our study shows that in typical experiments the radius of
a particle-rich domain is close to the preferred value R0 for
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the adsorbed particles, and vesicle formation is energetically
favored except for a possible energy barrier for domain
nucleation at small n. On the study of the kinetics of vesicle
formation, assuming that domains grow independently with-
out being affected by other domains is a reasonable zeroth-
order approximation. Thus the multiple vesicle formation
problem of endocytosis can be reduced to a much simpler
problem. We find that when Dnvjon /a2joff

2 �O�1� only a
small fraction of single-particle domains join other domains
within time joff

−1 and the number of vesicles produced per unit
time is proportional to �jon / joff�2. When Dnvjon /a2joff

2

�O�1� most single-particle domains join other domains
without leaving the membrane, and the number of vesicles
produced per unit time is proportional to jon. The growth rate
of a domain is largely determined by its in-plane radius Rn;
as a result in the time-independent state the densities of do-
mains with n /nv�1 and 1−n /nv�1 are large because of
small k�n� at small Rn.

In our model it is assumed that the membrane tension
does not change with time. This is a good approximation
when the membrane is a self-assembled bilayer in coexist-
ence with a lipid reservoir. In a cell, the mirror-image pro-
cess of endocytosis, exocytosis, also occurs all the time, and
caveolae can also serve as a lipid reservoir �25�; thus surface
tension can be treated as a constant during endocytosis. The
parameters jon and joff are related to interaction energy be-
tween particles and the membrane; in particular, jon also de-
pends on the geometry of the system. It is straightforward to
estimate the values of jon and joff for in vivo and in vitro
experiments; thus our model will help the analysis of future

experiments on this important nonequilibrium process.
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APPENDIX

In this appendix we show analytically that domain growth
in typical experiments is not in the strongly coupled regime.
First, straightforward algebra gives us


n=1

nv−1

�s�n� = k�1��s�1� 
n=1

nv−1
1

k�n�

=
mk�1�

2��nvk�1� + joff�

n=1

nv−1
K0�mRn�

RnK1�mRn�
. �A1�

Assuming that domain growth is strongly coupled, one finds
the expression

�

ld
=

	D/nvk�1�
ld

=	 Dm

2�nv�nvk�1� + joff�

n=1

nv−1
K0�mRn�

RnK1�mRn�

=�	 Dm

2�nvjoff

n=1

nv−1
K0�mRn�

RnK1�mRn�
when nvk�1� � joff,

	 Dm

2��nv�2k�1� 
n=1

nv−1
K0�mRn�

RnK1�mRn�
when nvk�1� � joff.�

�A2�

Figure 4 shows that the magnitude � / ld decreases monotoni-
cally as jon increases; therefore it is sufficient to show that
� / ld
1 in the small-jon limit. As Fig. 5 indicates, at small jon
the vesicle formation rate scales as jon

2 because most single-
particle domains do not encounter another domain within the
time joff

−1. Thus nvk�1�� joff and m
	joff /D. Using the
asymptotic forms K0�x�
−ln�x�−�+ln 2+¯ �here �
=0.577 215 66. . . is the Euler-Mascheroni constant�, K1�x�

x−1+¯ �20�, and Rn=	na	1− �	na /2R0�2=	na	1−n /nv,
one finds that for typical values of D, nv, and joff,

�

ld
=	 1

4�
�ln� 4D

joffa
2nv

� + 2�1 − ��� 
 O�1�

when nvk�1� � joff. �A3�

Thus domain growth in typical experiments is not strongly
coupled.
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